Local Kernel for Brains Classification in Schizophrenia
نویسندگان
چکیده
In this paper a novel framework for brain classification is proposed in the context of mental health research. A learning by example method is introduced by combining local measurements with non linear Support Vector Machine. Instead of considering a voxel-by-voxel comparison between patients and controls, we focus on landmark points which are characterized by local region descriptors, namely Scale Invariance Feature Transform (SIFT). Then, matching is obtained by introducing the local kernel for which the samples are represented by unordered set of features. Moreover, a new weighting approach is proposed to take into account the discriminative relevance of the detected groups of features. Experiments have been performed including a set of 54 patients with schizophrenia and 54 normal controls on which region of interest (ROI) have been manually traced by experts. Preliminary results on Dorsolateral PreFrontal Cortex (DLPFC) region are promising since up to 75% of successful classification rate has been obtained with this technique and the performance has improved up to 85% when the subjects have been stratified by sex.
منابع مشابه
Feature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
متن کاملMapping Brains on Grids of Features for Schizophrenia Analysis
This paper exploits the embedding provided by the counting grid model and proposes a framework for the classification and the analysis of brain MRI images. Each brain, encoded by a count of local features, is mapped into a window on a grid of feature distributions. Similar sample are mapped in close proximity on the grid and their commonalities in their feature distributions are reflected in th...
متن کاملNeural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images
Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...
متن کاملOn Classifying Disease-Induced Patterns in the Brain Using Diffusion Tensor Images
Diffusion tensor imaging (DTI) provides rich information about brain tissue structure especially in the white matter, which is known to be affected in several diseases like schizophrenia. Identifying patterns of brain changes induced by pathology is therefore crucial to clinical studies. However, the high dimensionality and complex structure of DTI make it difficult to apply conventional linear...
متن کاملSexual Dimorphism in Volume of the Cerebral Hemispheres and Lateral Ventricles in Schizophrenia Using Magnetic Resonance Imaging
Purpose: This study is designed to determine the sexual dimorphism pattern in volume of the cerebral hemispheres and lateral ventricles in schizophrenia using magnetic resonance imaging (MRI) and to compare it with normal sexual dimorphism pattern in healthy brains. Materials and Methods: This study is performed on 29 healthy volunteers (21 males, 8 females) and 29 patients suffered from schiz...
متن کامل